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Abstract

This paper is concerned with the elastic/plastic buckling of thick plates of rectangular and circular shapes. For thick
plates, the significant effect of transverse shear deformation on the critical buckling load may be accounted for by
adopting the Mindlin plate theory. To capture the elastic/plastic behaviour, two competing theories of plasticity are
considered; viz. the incremental theory (IT) of plasticity (with the Prandtl-Reuss constitutive relations) and the de-
formation theory (DT) of plasticity (with the Hencky constitutive relation). Analytical elastic/plastic stability criteria
are derived for (a) uniaxially and equibiaxially loaded rectangular plates with two opposite edges simply supported
while the other two edges may take on any combination of free, simply supported or clamped boundary condition and
(b) uniformly inplane loaded circular plates with either simply supported edge or clamped edge. Extensive buckling
stress factors are tabulated for these plates with material properties defined by the Ramberg-Osgood relation. Com-
paring the results obtained from the DT and the IT, it can be seen that not only the DT in general gives consistently
lower values of buckling stress factor but the divergence of the results from the two theories increases with increasing
plate thicknesses, £/, values and ¢ values of the Ramberg—Osgood relation. The buckling results from the two theories
and their marked difference from each other for thick plates may be exploited in the design of experimental tests to
ascertain which one of the two theories provides good estimates of the buckling loads for thick plates. © 2001 Elsevier
Science Ltd. All rights reserved.

Keywords: Elastic/plastic buckling; Thick plates; Incremental theory of plasticity; Deformation theory of plasticity; Rectangular plates;
Circular plates

1. Introduction

Elastic bifurcation and postbuckling behaviour of thin plates have been extensively studied and well
documented in standard texts (e.g. Timoshenko and Gere, 1961; Bazant and Cedolin, 1991). When the plate
thickness to length ratio is greater than 1/20, it is necessary to use thick plate theories such as the Mindlin
(1951) plate theory to calculate the buckling load. Otherwise the buckling load will be overestimated be-
cause in thick plates the effect of transverse shear deformation is significant. Elastic buckling of Mindlin
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plates has been investigated by many researchers (for example, Herrmann and Armenakas, 1960; Brunelle,
1971; Kanaka Raju and Venkateswara Rao, 1983; Chen and Doong, 1984; Dumir, 1985; Hong et al., 1993;
Wang et al., 1993; Wang, 1995; Wang et al., 1996).

The elastic buckling load is useful as an upper bound solution and a basic reference parameter in design
codes. For a more advanced bifurcation buckling analysis, various elastic/plastic theories have been pro-
posed, which may be categorized under the incremental (or flow) theory (IT) of plasticity (e.g. Handelman
and Prager, 1948; Pearson, 1950), the deformation theory (DT) of plasticity (e.g. Kaufmann, 1936; Illyu-
shin, 1947; Stowell, 1948; Bijlaard, 1949; El-Ghazaly and Sherbourne, 1986), or the slip theory (e.g.
Bartdorf, 1949; Inoue and Kato, 1993). The success of these is varied. For example, the DT gives a better
prediction of buckling loads for long simply supported plates while the IT gives better results for cylinders
under compression and torsion. Accordingly, some researchers (e.g. Shrivastava, 1979; Ore and Durban,
1989; Tugcu, 1991; Durban and Zuckerman, 1999) presented the elastic/plastic buckling loads of plates
based on both the deformation-type theory and the incremental-type theory. There are, however, other
simplified theories such as the one proposed by Bleich (1952). Bleich assumed a two-moduli plate where the
modulus in the direction of stress that is likely to exceed the proportional limit be taken as the tangent
modulus 7" while in the direction where there is little stress, the elastic modulus £ be taken. Further-
more, the factor for the twisting moment curvature relation is arbitrarily chosen as (T /E)"*. Bleich’s sim-
plified theory seems to give results in close agreement with large-scale test results obtained by Kollbrunner
(1946).

Apart from the paper by Shrivastava (1979), the aforementioned studies on elastic/plastic buckling
analysis of plates adopted the classical thin plate theory. When dealing with thick plates where buckling
occurs in the plastic range, a shear deformable plate theory has to be employed so as to admit the significant
effect of transverse shear deformation. Complementing the work of Shrivastava (1979), the present study
adopts the Mindlin plate theory for the elastic/plastic buckling of rectangular thick plates under equibiaxial
and uniaxial loading, and of circular thick plates under a uniform radial load. Two plasticity theories are
considered; i.e. the IT of plasticity with the Prandtl-Reuss constitutive equations and the DT of plasticity
with the Hencky stress—strain relation. An important difference between these two theories is that the strain
in the former theory depends on the manner in which the state of stress is built up, whereas in the latter
theory the strain that corresponds to a certain state of stress is entirely independent of the manner in which
this state of stress has been reached. Analytical elastic/plastic stability criteria are derived for rectangular
and circular thick plates for both theories. Extensive buckling stress factors, from both theories of plas-
ticity, are tabulated for square and circular plates whose materials exhibit strain hardening characterized by
the Ramberg-Osgood stress—strain relation. These basic results should be useful to engineers who are
designing plate structures subject to inplane loadings and to researchers planning to perform buckling
experiments on thick plates so as to ascertain which of the two aforementioned theories gives a better
estimate of the buckling loads of thick plates.

2. Buckling of rectangular plates
2.1. Basic equations

Consider a flat, rectangular plate whose sides are of lengths @ and » and of uniform thickness / as shown
in Fig. 1. The plate is acted upon by uniform compressive stresses of magnitudes ¢; and o, in the x- and y-
direction, respectively. According to the Mindlin plate theory (Mindlin, 1951), the admissible velocity field
may be written as

vy =z, vy = zghy; v, =w (1)
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Fig. 1. Elastic/plastic buckling of rectangular plates.

where ¢, and ¢, are the rotation rates about the y- and x-axes, respectively, and w is the transverse velocity.
The strain rates corresponding to Eq. (1) are given by

0
éxxzza(bx; éwzzﬁ
Ox ’ dy @)
. [0, 09\ . ow . ow
))x}_Z( ay a ) sz—¢x+aa /yz_gby—’_a

The constitutive relations of the Prandtl-Reuss type as well as the Hencky type for a linearized elastic/

plastic solid that behaves identically under loading and unloading, are given by (Chakrabarty, 2000)
1.’-X.V = G’)}xy; ‘L.-XZ = KzG'}}xz; ‘L'-,W = KZG’)))/Z

3)

where E is the elastic modulus, G the effective shear modulus, and x? the Mindlin shear correction factor to
compensate for the error in assuming a constant shear strain (hence a constant shear stress) through the
plate thickness.

The expressions of o, f8, y, p and the shear modulus are given by (see Appendices A and B for their
derivations):

In the case of the incremental theory:

=l
b=y foann(5) ]
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In the case of the deformation theory:

1 T\ o2
a:[4_3(1_s)6;]

p
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p=3c+ (1—zv>[2—<1—2V>§‘3(1‘§)%]
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wherein the ratios of the elastic modulus E to the tangent modulus 7, and the secant modulus S at the onset
of buckling are expressed by the Ramberg-Osgood elastoplastic characteristic in the forms of

c—1
E o
—=1 k| — ; 1 6
T +c ((70) ;> (6)

c—1
E o
<=1+kl = ; 1 7
57T () L ™

where g is a nominal yield stress, ¢ is a dimensionless constant that describes the shape of the stress—strain
relationship with ¢ = oo for elastic—perfectly plastic response, k the horizontal distance between the knee of
¢ = oo curve and the intersection of the ¢ curve with the /0y = 1 line as shown in Fig. 2. The equivalent
stress & is defined on the basis of von Mises yield criterion given by

¢’ = o — 0,0, + 03 (8)

Note that by setting the secant modulus S in Eq. (5) to be equal to the elastic modulus (i.e. S = E), the
expressions of «, f8, y, p of the Hencky DT reduce to those corresponding to the IT with Prandtl-Reuss
equations.

To obtain the condition for bifurcation of the plate in the elastic/plastic range, it is assumed that
Shanley’s concept of continued loading during buckling is accepted and therefore, no unloading takes
place. Consider the uniqueness criterion in the form (Chakrabarty, 2000)

. . .. .. .. ow\? ow
/ {(O-«’UCSXX + O-)/ys)ﬂ’ + Txyyxy + szyxz + T)’Zyyz) — 01 (&) — 02 < ay ) }dV > O (9)

Using Egs. (3) and (4) and integrating through the thickness of the plate, the condition for uniqueness is

reduced to
aEh} 2 WER (09, ﬁEh3 0p,\ GK ¢
[ (o) i () 1 () (%) + ( =)
—alh(a—w) 02h drdy > 0 (10)

ow\? ow\?
(45) +(or3)
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Fig. 2. Ramberg-Osgood stress—strain relation.
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The Euler-Lagrange differential equations associated with the minimization with respect to arbitrary
variations of w, ¢,, ¢, are easily shown to be

36, 0 O w

2 X, "y 2 _

KGh(ax—l—ay—i-Vw) az—i—azhaz (I1a)
0 (aEW 0, PER 3¢, G (06, 00,\] _ . ow\

ax<12 a1 6y>+6 [12( y+§>} Gh<¢+a)0 (11b)
0 (VEW 0p, PER 0, Gh3 0, N\] ow\

ay( 12 6y + 12 ox +ax % +E Gh\ 9 + =0 (1lc)

If the tangent modulus and the secant modulus at the point of bifurcation is the same as the elastic
modulus, i.e. T =S = E, we have

1

v (12a)

0=7y=

p= (12b)

1-—2

and Eqgs. (11a)—-(11c) would then reduce to the well-known governing equation for elastic buckling of
Mindlin plates (Brunelle, 1971; Wang, 1995).
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2.2. Buckling solutions for simply supported rectangular plates

For a rectangular plate with simply supported edges as shown in Fig. 1, the boundary conditions are

w(0,y) = M (0,y) = ¢,(0,y) =0 (13a)
w(x,0) = Myy(xa 0) = ¢,(x,0) =0 (13b)
w(a,y) = Mu(a,y) = ¢,(a,y) =0 (13c)
W, b) = My (x,5) = ,(x,5) = 0 (13d)
where the bending moment rates are
Eh* [ 0¢ 09, Eh® [ 0¢ G0}
M, =—— o - , M, = — x _r 14
: 12<a6x+ﬁ@y) » 12<ﬁ6x+y6y> (14)
The rates of displacement and rotations that satisfy the foregoing boundary conditions are given by
0 in (™™ in (M
w—Cmnsm( p )sm( b ) (15a)
— % cos (™™ in ("
¢, = C% cos ( p ) sin ( b ) (15b)
_ Csin (™Y cos (M
d)y—Cm,,sm( p )cos( b ) (15¢)
where C* | C9:, Co are constants, mn=1273,...

The substitution of Egs. (15a)—(15¢) in Egs. (11a)—-(11c¢) results in the following three equations which
may be expressed as:

Ay A A cr 0
Ap Axn Ch 8 =40 (16)
sym Az Cﬁf& 0
where
m’n®  ntn? m>n? n*m’
All :K‘th< 2 +7) _Ull’l(?) —O'zh(?) (173)
a
A13 = Kth(%> (170)
aER [ mPn Gh* ([ n*n? )

BER® G\ [ mnm?
Ao = (P01 1
» ( 2 1)\ (17¢)
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Table 1

Buckling stresses o, for a simply supported, square plate under uniaxial load
b/h Buckling stresses o, in ksi

IT DT Bleich’s theory®

22 70.844 60.080 56.125
23 65.166 58.836 55.139
24 60.713 57.397 54.109
25 57.363 55.730 52.988
26 54.598 53.806 51.712
27 51.938 51.569 50.185
28 49.112 48.962 48.269

#Note that Bleich’s theory gives

Uﬁan\/T/E(@)z a/p_ . T/E
R0 =-v)\b) |nyYT/E ni/ajb

where 7 is the number of half waves in which the plate buckles in the x-direction.

_ YER® (n*n? Gh® (m*n? )
4w =" <b2 T e )T (170

The critical buckling stress can be determined by setting the determinant of the matrix [4] in Eq. (16) to zero.

To assess the correctness of the foregoing formulation, we consider Shrivastava’s square plate (i.e. a = b)
constructed from 14S-T6 aluminium alloy where £ = 10,700 ksi, v = 0.32, ¢, = 61.4 ksi, the Ramberg—
Osgood parameters ¢ = 20 and k£ = 0.3485. The plate is subjected to a uniaxial load. The buckling stresses,
obtained on the basis of the DT and the IT, are given in Table 1 for comparison purposes. These results are
in very good agreement with Shrivastava’s values that were plotted in Fig. 2 of his paper (Shrivastava,
1979). As expected, the use of the DT leads to a lower buckling stress value when compared to the cor-
responding value obtained using the IT, since the latter theory gives a stiffer response in the plastic range.
Also, it can be seen from Table 1 that Bleich’s buckling results, known to agree well with experimental test
results, are closer to the results of the DT.

As presented in Figs. 3 and 4, critical buckling stress factors o.4b?/(n’D) are determined for simply
supported, square plates with different thickness to width ratios /b, and various values of ¢ and E/ay. Note
that D = ER*/[12(1 — v*)] is the plate flexural rigidity. The Poisson ratio v = 0.3 and the shear correction
factor k> = 5/6 are used in all calculations. The plate is subjected to either a uniaxial inplane load or an
equibiaxial inplane load. It can be observed that the buckling stress factors obtained by the DT are con-
sistently lower than those obtained by the IT. Generally, the differences of results of these two theories
increase with (a) increasing plate thickness (i.e. /b values) as evident from Fig. 3a and b, and (b) increasing
E/aq values as can be seen from Fig. 4a and b. The Ramberg-Osgood constant ¢ and the loading con-
figuration (i.e. uniaxial load or equibiaxial loads) also affect the divergence of results from the two theories.
It is interesting to note that both theories give somewhat similar results when the plate is thin, equibiaxially
loaded and ¢ value is large (say 20). Apart from the aforementioned situation, there is a marked difference
in buckling stress factors from the two theories, which could be exploited when designing experimental tests
on plates to establish which one of the theories gives better estimates of the buckling results for thick plates.

Fig. 5a presents the variations of the buckling stress factors, from the two theories, with respect to the
aspect ratio a/b of uniaxially loaded, simply supported rectangular plates (of #/b = 0.025) for various
values of c¢. It is worth noting that the kinks, where the number of half waves switches, are displaced as a
result of transverse shear deformation as well as the inelastic characteristics. Fig. 5b shows the buckling
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Fig. 3. Buckling stress factor o.4b*/(n*D) versus thickness ratio /b for simply supported, square Mindlin plates subjected to (a)
uniaxial load and (b) equibiaxial load (E/adq = 750, a/b=1, v= 0.3, x> = 5/6, k = 0.25).

stress factor variations for equibiaxially loaded rectangular plates. In contrast to the uniaxial loaded plate
case, there are no kinks in the variations of the buckling stress factors with respect to the aspect ratio,
indicating that there is no mode switching.
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Fig. 4. Buckling stress factor ¢.hb?/(n2D) versus E/a, for simply supported, square Mindlin plates subjected to (a) uniaxial load and
(b) equibiaxial load (a/b =1, h/b=0.025, v= 0.3, x> =5/6, k =0.25).

2.3. Buckling solutions for rectangular plates with two opposite sides simply supported

Next, we consider rectangular plates with two opposite edges simply supported (edges y = 0 and y = b),
while the other edges (edge x = 0 and edge x = a) may take on any combination of free, simply supported
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Fig. 5. Buckling stress factor ¢.4b*/(n*D) versus aspect ratio a/b for simply supported, rectangular Mindlin plates subjected to (a)
uniaxial load and (b) equibiaxial load (E/aq = 750, h/b = 0.025, v= 0.3, x> =5/6, k = 0.25).

and clamped edges. The boundary conditions for the two simply supported parallel edges (y = 0 and y = b)
are
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w(x,0) = M,,(x,0) = ¢.(x,0) =0 (18a)
w(x, b) = M,,(x,b) = ¢.(x,b) =0 (18b)

and the boundary conditions for the other two edges (x = 0 and x = a) are given by (Xiang et al., 1996)

M, =M, =0, 0. — alh(;—w =0 if the edge is free (19)
X
w= M, = ¢, =0 if the edge is simply supported (20)
w=¢, =¢,=0 if the edge is clamped (21)
in which
ow
— 2 hidd 22
QX K Gh <¢v + ax ) ( a‘)
ER® [ 3¢, 0o,
Eh3 a¢)v ad)y
My 1 ('B ax T dy > (22¢)
Gh* (0, 09,
M, =—— : 2 22
? 12 ( oy + Ox > (22d)

For such rectangular plates with two opposite sides simply supported, the Levy-type solution procedure
may be used to solve the governing differential equations (Egs. (11a)—(11c)) for buckling of plates. The
velocity fields of the plate may be expressed as (Xiang et al., 1996)

w(x,y) 1, (x) sin 5~
¢ (x,) p = ni(x)sin“E (23)
¢, (x,¥) 1, (x) cos “*

in which #,,(x), n,(x) and ,(x) are unknown functions to be determined, and m = 1,2,..., cc is the number
of half waves of the buckling mode shape in the y-direction. Eq. (23) satisfies the simply supported
boundary conditions on edges y = 0 and y = b.

Substituting Eq. (23) into Egs. (11a)—(11c), the following differential equation system can be derived:

W = Hy (24)

where = [n, #, n, 0, n, n ]" and {/ is the first derivative of y with respect to x, the prime (') is
the derivative with respect to x, and H is a (6 x 6) matrix with the following non-zero elements:

Hy =Hyy =Hsg =1 (25a)

(K2Gh — o3h)(mm/b)?

H =
2 K2Gh — a1h

(25b)
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—Kk*Gh
R (235
2
Hys = % (25d)
—Kk>Gh
Hyp = m (25¢)
 —Kk*Gh + (GI*/12)(mn/b)’
He = (0EH3/12) (25f)
_ [(BER/12) + (GI*/12)](mn/b)
Hie = (aER3/12) (@8)
_ kK*Gh(mm/b)
He = G /12) (25h)
~ —[(BER*/12) 4 (GR®/12))(mm/b) .
Hes = (Gh?/12) (251)
_ [K*Gh + (yER /12)(mn /b)) .
Hegs = (G /12) (25))
The solution of the differential equation system (Eq. (24)) can be obtained as
¥ = e'c (26)

where ¢ is constant column vector that can be determined from the boundary conditions of the plate; and
ef* is the general matrix solution. The detailed procedure in determining Eq. (26) may be found in an earlier
paper by Xiang et al. (1996).

Applying the boundary conditions on the edges parallel to the y-axis, a homogeneous system of equa-
tions is obtained

Ke=0 (27)

The buckling stresses o; and ¢, are determined when the determinant of K is equal to zero. As the
buckling stresses are imbedded in matrix H, it cannot be obtained directly from Eq. (27). A numerical
iteration procedure was used for the calculations (Xiang et al., 1996).

Tables 2-4 present the buckling stress factors of square plates under uniaxial and equibiaxial loads. In
the calculations, k> = 5/6 and v = 0.3 were taken. For brevity, we shall use the letters F for free edge, S for
simply supported edge and C for clamped edge and a four-letter designation to represent the boundary
conditions of the plate. So for example, a CSFS plate will have a clamped edge along x = 0, a simply
supported edge along y = 0, a free edge along x = ¢ and a simply supported edge along y = b. It can be
observed that for very thick plates (2/b = 0.075) and high values of ¢, the buckling load factors of the IT do
not vary much with respect to the £/, ratios. In contrast, the corresponding buckling results from the DT
decrease significantly with increasing £/a, values for very thick plates. The buckling factors are much lower
when compared to their thin plate counterparts due to the effect of transverse shear deformation.
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Buckling stress factors o.4b*/(n2D) for FSFS square plates under uniaxial load in the x-direction (Panel A), equibiaxial load (Panel B)

(k* =5/6,v =03, k=0.25)

¢ E/oy o.hb*/(n*D)
h/b=0.025 h/b = 0.050 h/b=0.075
1T DT IT DT 1T DT
Panel A
Elastic - 1.999 1.999 1.946 1.946 1.888 1.888
2 200 1.967 1.872 1.835 1.582 1.683 1.315
300 1.952 1.819 1.794 1.473 1.624 1.188
500 1.925 1.729 1.729 1.316 1.542 1.024
750 1.895 1.637 1.669 1.183 1.476 0.8960
3 200 1.987 1.964 1.815 1.629 1.551 1.216
300 1.974 1.925 1.722 1.447 1.433 1.015
500 1.937 1.826 1.577 1.188 1.306 0.7831
750 1.880 1.691 1.464 0.9834 1.236 0.6259
5 200 1.998 1.996 1.805 1.694 1.381 1.115
300 1.994 1.988 1.624 1.424 1.240 0.8580
500 1.965 1.926 1.392 1.060 1.133 0.5995
750 1.875 1.765 1.279 0.8094 1.111 0.6013
10 200 1.999 1.999 1.828 1.786 1.226 1.0343
300 1.999 1.999 1.520 1.413 1.113 0.8916
500 1.994 1.992 1.242 0.9609 1.104 0.4835
750 1.904 1.865 1.198 0.6882 1.104 0.3400
20 200 1.999 1.999 1.881 1.869 1.136 0.9993
300 1.999 1.999 1.467 1.418 1.104 0.8187
500 1.999 1.999 1.198 0.9164 1.104 0.4725
750 1.958 1.949 1.196 0.6350 1.104 0.2978
Panel B
Elastic - 0.9280 0.9280 0.9207 0.9207 0.9106 0.9106
2 200 0.9147 0.8992 0.8735 0.8241 0.8195 0.7372
300 0.9083 0.8860 0.8531 0.7882 0.7852 0.6856
500 0.8961 0.8618 0.8173 0.7308 0.7306 0.6119
750 0.8817 0.8348 0.7798 0.6766 0.6799 0.5493
3 200 0.9258 0.9241 0.8911 0.8693 0.8033 0.7468
300 0.9232 0.9194 0.8605 0.8227 0.7304 0.6582
500 0.9151 0.9052 0.7910 0.7302 0.6186 0.5346
750 0.9004 0.8807 0.7116 0.6366 0.5291 0.4397
5 200 0.9279 0.9279 0.9118 0.9074 0.7964 0.7659
300 0.9278 0.9277 0.8821 0.8670 0.6709 0.6314
500 0.9265 0.9257 0.7701 0.7367 0.5072 0.4618
750 0.9205 0.9170 0.6375 0.5966 0.4008 0.3495
10 200 0.9280 0.9280 0.9204 0.9204 0.8129 0.8021
300 0.9280 0.9280 0.9125 0.9105 0.6298 0.6157
500 0.9280 0.9280 0.7703 0.7582 0.4299 0.4114
750 0.9278 0.9278 0.5843 0.5695 0.3189 0.2929
20 200 0.9280 0.9280 0.9207 0.9207 0.8461 0.8428
300 0.9280 0.9280 0.9206 0.9207 0.6217 0.6174
500 0.9280 0.9280 0.7914 0.7877 0.4000 0.3930
750 0.9280 0.9280 0.5689 0.5641 0.2847 0.2717
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Table 3
Buckling stress factors ¢.4b*/(n°D) for SSFS square plates under uniaxial load in the x-direction (Panel A), equibiaxial load (Panel B)
(kK*=5/6,v=0.3, k=0.25)

¢ E/ay a.hb?/(7*D)
h/b=0.025 /b =0.050 h/b=0.075
IT DT 1T DT 1T DT
Panel A
Elastic - 2.312 2.312 2.245 2.245 2.169 2.169
2 200 2.232 2.132 2.013 1.758 1.797 1.436
300 2.199 2.061 1.943 1.624 1.714 1.288
500 2.143 1.942 1.844 1.437 1.606 1.101
750 2.086 1.824 1.759 1.283 1.523 0.9588
3 200 2.278 2.250 1.965 1.773 1.610 1.283
300 2.242 2.185 1.822 1.549 1.466 1.060
500 2.154 2.033 1.632 1.250 1.318 0.8113
750 2.043 1.848 1.495 1.026 1.236 0.6456
5 200 2.307 2.305 1.926 1.809 1.402 1.143
300 2.292 2.282 1.678 1.482 1.240 0.8736
500 2.199 2.149 1.408 1.085 1.151 0.6074
750 2.012 1.895 1.280 0.8234 1.134 0.4496
10 200 2.311 2.311 1.926 1.880 1.228 1.043
300 2.311 2.311 1.544 1.439 1.135 0.7491
500 2.280 2.272 1.248 0.9682 1.129 0.4350
750 2.023 1.977 1.215 0.6915 1.129 0.3408
20 200 2.311 2.311 1.973 1.959 1.150 1.002
300 2.311 2.311 1.479 1.430 1.129 0.6965
500 2.310 2.310 1.215 0.9185 1.129 0.4350
750 2.081 2.067 1.214 0.6358 1.129 0.2979
Panel B
Elastic - 1.046 1.046 1.032 1.032 1.015 1.015
2 200 1.034 1.010 0.9911 0.9162 0.9364 0.8112
300 1.028 0.9942 0.9726 0.8738 0.9045 0.7521
500 1.017 0.9649 0.9393 0.8070 0.8523 0.6686
750 1.004 0.9325 0.9034 0.7446 0.8022 0.5985
3 200 1.044 1.041 1.004 0.9672 0.9112 0.8179
300 1.041 1.034 0.9731 0.9102 0.8360 0.7164
500 1.033 1.016 0.9016 0.8009 0.7195 0.5783
750 1.018 0.9847 0.8180 0.6938 0.6276 0.4739
5 200 1.046 1.046 1.022 1.013 0.8859 0.8305
300 1.045 1.045 0.9865 0.9569 0.7484 0.6772
500 1.044 1.042 0.8577 0.7976 0.5791 0.4915
750 1.036 1.029 0.7133 0.6394 0.4784 0.3708
10 200 1.046 1.046 1.032 1.032 0.8769 0.8551
300 1.046 1.046 1.016 1.010 0.6749 0.6460
500 1.046 1.046 0.8271 0.8036 0.4768 0.4291
750 1.045 1.045 0.6280 0.5965 0.3928 0.3049
20 200 1.046 1.046 1.032 1.032 0.8919 0.8847
300 1.046 1.046 1.031 1.032 0.6465 0.6362
500 1.046 1.046 0.8266 0.8190 0.4306 0.4041

750 1.046 1.046 0.5929 0.5808 0.3762 0.2791
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Table 4
Buckling stress factors o.4b*/(n2D) for CSFS square plates under uniaxial load in the x-direction (Panel A), equibiaxial load (Panel B)
(k* =5/6,v =03, k =0.25)

¢ E/oy o.hb*/(n*D)
h/b=0.025 h/b = 0.050 h/b=0.075
1T DT IT DT 1T DT
Panel A
Elastic - 2.336 2.336 2.268 2.268 2.189 2.189
2 200 2.251 2.150 2.022 1.767 1.801 1.441
300 2.217 2.077 1.950 1.631 1.716 1.292
500 2.157 1.955 1.848 1.442 1.607 1.103
750 2.097 1.835 1.761 1.287 1.523 0.9602
3 200 2.300 2.271 1.972 1.780 1.611 1.285
300 2.262 2.204 1.825 1.553 1.466 1.061
500 2.168 2.046 1.632 1.252 1.319 0.8117
750 2.052 1.856 1.495 1.027 1.237 0.6458
5 200 2.332 2.329 1.931 1.815 1.402 1.144
300 2.315 2.304 1.679 1.483 1.241 0.8737
500 2.215 2.163 1.408 1.085 1.153 0.6074
750 2.019 1.901 1.281 0.8235 1.136 0.4496
10 200 2.336 2.336 1.929 1.883 1.228 1.043
300 2.336 2.335 1.544 1.439 1.137 0.7491
500 2.300 2.292 1.250 0.9682 1.131 0.4850
750 2.028 1.982 1.217 0.6915 1.131 0.3408
20 200 2.336 2.336 1.976 1.962 1.151 1.002
300 2.336 2.336 1.479 1.431 1.131 0.6965
500 2.335 2.335 1.216 0.9185 1.131 0.4351
750 2.085 2.071 1.215 0.6358 1.131 0.2979
Panel B
Elastic - 1.130 1.130 1.112 1.112 1.090 1.090
2 200 1.119 1.089 1.075 0.9807 1.020 0.8622
300 1.114 1.071 1.059 0.9335 0.9913 0.7976
500 1.104 1.038 1.028 0.8597 0.9431 0.7070
750 1.092 1.001 0.9953 0.7914 0.8956 0.6316
3 200 1.128 1.124 1.084 1.035 0.9907 0.8656
300 1.125 1.116 1.055 0.9704 0.9171 0.7551
500 1.118 1.094 0.9852 0.8488 0.7997 0.6070
750 1.103 1.058 0.9016 0.7321 0.7059 0.4962
5 200 1.130 1.130 1.100 1.086 0.9530 0.8729
300 1.130 1.129 1.062 1.018 0.8101 0.7073
500 1.128 1.125 0.9253 0.8380 0.6381 0.5110
750 1.119 1.108 0.7749 0.6678 0.5426 0.3847
10 200 1.130 1.130 1.111 1.111 0.9227 0.8886
300 1.130 1.130 1.087 1.075 0.7118 0.6659
500 1.130 1.130 0.8698 0.8331 0.5225 0.4406
750 1.130 1.129 0.6652 0.6146 0.4713 0.3124
20 200 1.130 1.130 1.112 1.112 0.9207 0.9090
300 1.130 1.130 1.109 1.112 0.6674 0.6489
500 1.130 1.130 0.8514 0.8386 0.4771 0.4109

750 1.130 1.130 0.6147 0.5920 0.4675 0.2832




8632 C.M. Wang et al. | International Journal of Solids and Structures 38 (2001) 8617-8640

In general, the DT gives consistently lower values of buckling stress factor when compared to the
corresponding results obtained using the IT. The difference between the results of these two theories tends
to increase with increasing thickness ratios, £/0, values and the ¢ values of the Ramberg-Osgood relation.

3. Axisymmetric buckling of circular plates
3.1. Basic equations

Consider a circular plate with radius ¢ and uniform thickness /4. The plate is subjected to uniform
compressive radial stress of magnitude o. According to the Mindlin plate theory, the admissible velocity
field for axisymmetric deformation is given by

v, = z¢; vg = 0; v.=w (28)

where ¢ is the rate of rotation and w the transverse velocity. For axisymmetric buckling, the non-zero strain
rates associated with Eq. (28) are given by

) d¢ ) 10} . dw

o — 27775 200 — 23 = 3. 29

br =24, Bo0 =2 V=0 + ar (29)
The constitutive relations are given by

d-rr = E(a‘érr + ﬁé()()); d-()ﬂ = E(ﬁgrr + OCE.I()()); i-rz = KZG).)rz (30)

where E is the Young’s modulus, x? the shear correction factor and the parameters «, f8, 7 are given by

(D) o1

ﬁ:%[2-2(1-2@§-3(1-§” (31b)
p—3§+(l—2v){2—(1—2v)l—1;—3<1—§)] (31c)

and the ratios of the elastic modulus E to the shear modulus G, the tangent modulus 7, secant modulus S at
the onset of buckling are given in Eqs. (5)—(7). Note that the preceding expressions of «, f5, p describe the
constitutive equations based on the rate form of Hencky’s stress—strain relation. By setting S = E, these
expressions reduce to those corresponding to the Prandtl-Reuss constitutive relation.

To obtain the condition for bifurcation of the plate in the elastic/plastic range, consider the uniqueness
criterion which takes the form of

dw\ 2
/ {(d'rrérr + Gopéop + T12)ye) — O'<d—v:> }dV >0 (32)

Using Egs. (29) and (30) and integrating through the thickness of the plate, the condition for uniqueness is
reduced to

aER (dp\®  oER [ $\®  PER (¢ [do dw’ dw’
//{ 2 (a) + B (7) + 6 (7) <E)+K2Gh(¢+§> —O'h<5> rdr >0




C.M. Wang et al. | International Journal of Solids and Structures 38 (2001) 8617-8640 8633

The Euler-Lagrange differential equations associated with the minimization with respect to arbitrary
variations of w, and ¢ are easily shown to be

dw dw dw ¢
2 _ = _— _—
W Gh <¢ + dr> oh a7 @ 1 — (0/x%*G) (34a)
and
aER d*¢  aER* dp  oER ¢, dw
P R T Gh("’*a)— (340)

When the bifurcation occurs in the elastic range (i.e. 7 = S = E), we have o given by Eq. (12a), respectively,
and Egs. (34a) and (34b) reduce to the well-known governing equation for elastic buckling of circular
Mindlin plates (Hong et al., 1993).

3.2. Axisymmetric buckling solutions of circular plates

Eliminating the derivative of w in Eq. (34b) by using Eq. (34a), one obtains

¢ d¢
20 ¥ st 2 _ —
rge g tE o e=0 (35)
where
ah 12
= 36
: r\/<1 - (a/rch)) oER (36)
Eq. (35) is a Bessel’s differential equation with the general solution
¢ = 4)1(&) + BN (&) (37)

where A, B are constants, J,(&), ¥(¢) are first order Bessel functions of the first kind and second kind,
respectively. Since from axisymmetric condition ¢ = 0 at the plate centre (i.e. at r = & = 0), the constant B
must vanish in Eq. (37). Thus Eq. (37) reduces to

¢ =A44(¢) (38)

The critical stress would evidently depend on the support condition at the edge at r = a.

3.3. Clamped circular plate

For a clamped circular plate, the rotation at the edge must vanish at the edge, i.e. ¢ = 0 at » = a. Thus in
view of this boundary condition and Eq. (38), the bifurcation criterion is given by,

Ji(A)=0 (39)
where, in view of Egs. (31a) and (36),

oh 12
A= a\/<1 — (U/KZG)> oaEh3 (40)

Since 4 involves o/E for any given stress—strain curve, the solution must be found by an iterative method,
such as the false position method.
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3.4. Simply supported circular plate

For a simply supported circular plate, the bending moment in the radial direction must vanish at the
edge, i.e. dp/d& + (f¢p)/(af) = 0 at r = a. Thus, in view of Egs. (31a) and (31b), using Eq. (38) and noting
the fact that J| (&) = Jo(&) — (1/&)J1(€), we obtain the bifurcation criterion as,

Ao (4) p

o) 1 » (41)
Since the left hand side of this equation depends on the value of ¢/E, the critical stress has to be computed
iteratively.

Tables 5 and 6 present the buckling stress factors for simply supported and clamped circular plates,
respectively, for various values of ¢ and thickness-to-radius ratios //a. In the calculations, x*> = 5/6 and
v = 0.3 were taken. The elastic buckling stress factors, obtained by setting 7 = S = E, are also given for
comparison purposes and these elastic results check out with those obtained by Kanaka Raju and Venk-
ateswara Rao (1983) and Hong et al. (1993).

Based on the buckling stress factors in these tables, we observe that

(a) For simply supported plates, the buckling stress factors decrease with increasing plate thickness
h/a, but may increase or decrease depending on the values of £/, and c. Both theories of plasticity give
more or less similar buckling stress factors with the IT furnishing slightly higher results. Fig. 6 shows the

Table 5
Buckling stress factors o.ha®/(n2D) for simply supported circular plates (k2 = 5/6, v = 0.3, k = 0.25)
¢ E/ay o.ha® [ (n*D)
h/a=0.025 h/a =0.050 h/a =0.075
1T DT 1T DT IT DT

Elastic - 0.4250 0.4250 0.4241 0.4241 0.4225 0.4225

2 200 0.4185 0.4181 0.4002 0.3988 0.3756 0.3728
300 0.4153 0.4147 0.3902 0.3881 0.3586 0.3549
500 0.4094 0.4084 0.3726 0.3697 0.3317 0.3270
750 0.4024 0.4010 0.3545 0.3507 0.3067 0.3010

3 200 0.4245 0.4245 0.4167 0.4164 0.3919 0.3907
300 0.4239 0.4239 0.4086 0.4079 0.3665 0.3644
500 0.4220 0.4219 0.3875 0.3861 0.3198 0.3168
750 0.4185 0.4182 0.3589 0.3568 0.2757 0.2720

5 200 0.4250 0.4250 0.4236 0.4236 0.4121 0.4118
300 0.4250 0.4250 0.4217 0.4217 0.3850 0.3843
500 0.4249 0.4249 0.4087 0.4084 0.3160 0.3146
750 0.4246 0.4246 0.3744 0.3735 0.2518 0.2500

10 200 0.4250 0.4250 0.4241 0.4241 0.4221 0.4221
300 0.4250 0.4250 0.4240 0.4240 0.4121 0.4120
500 0.4250 0.4250 0.4231 0.4231 0.3258 0.3253
750 0.4250 0.4250 0.4028 0.4026 0.2413 0.2407

20 200 0.4250 0.4250 0.4241 0.4241 0.4225 0.4225
300 0.4250 0.4250 0.4241 0.4241 0.4222 0.4221
500 0.4250 0.4250 0.4241 0.4241 0.3425 0.3424

750 0.4250 0.4250 0.4217 0.4217 0.2429 0.2427
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Buckling stress factors o.ha®/(n>D) for clamped circular plates (k2 = 5/6, v = 0.3, k = 0.25)

8635

¢ E/ay a.ha® | (n’D)
hja = 0.025 h/a = 0.050 h/a = 0.075
IT DT IT DT IT DT
Elastic - 1.484 1.484 1.472 1.472 1.453 1.453
2 200 1.431 1.409 1.307 1.241 1.176 1.069
300 1.408 1.377 1.252 1.166 1.105 0.9742
500 1.367 1.320 1.168 1.055 1.009 0.8483
750 1.323 1.260 1.094 0.9573 0.9326 0.7481
3 200 1.470 1.466 1.320 1.282 1.086 1.001
300 1.453 1.445 1.218 1.158 0.9573 0.8458
500 1.409 1.388 1.060 0.9677 0.8072 0.6601
750 1.342 1.306 0.9296 0.8107 0.7092 0.5311
5 200 1.483 1.483 1.364 1.348 0.9997 0.9467
300 1.480 1.480 1.203 1.171 0.8168 0.7388
500 1.460 1.456 0.9534 0.8941 0.6443 0.5223
750 1.390 1.377 0.7779 0.6918 0.5638 0.3901
10 200 1.484 1.484 1.438 1.436 0.9425 0.9206
300 1.484 1.484 1.229 1.218 0.7133 0.6721
500 1.483 1.483 0.8782 0.8521 0.5442 0.4415
750 1.461 1.460 0.6678 0.6182 0.5176 0.3127
20 200 1.484 1.484 1.471 1.471 0.9316 0.9243
300 1.484 1.484 1.283 1.279 0.6689 0.6500
500 1.484 1.484 0.8550 0.8456 0.5178 04112
750 1.483 1.483 0.6182 0.5925 0.5164 0.2836
0.45
0.40 \\\ N\ A\
5 \ DT, c=2 Elastic Buckling
® 035 \
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S 0.30 Te=20
©
©
s \
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% 0.25 4
a ; ITc=3 \
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o | C \\
0.15 T T
0.00 0.02 0.04 0.06 0.08 0.10
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Fig. 6. Buckling stress factor o.ha’/(n>D) versus thickness ratio //a for simply supported circular Mindlin plates subjected to uniform
radial load (E/oy =750, v= 0.3, k¥* =5/6, k = 0.25).
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Fig. 7. Buckling stress factor g.ha’/(n*D) versus thickness ratio 4/a for clamped circular Mindlin plates subjected to uniform radial
load (E/oq =750, v= 0.3, ¥* =5/6, k = 0.25).

difference between the buckling results of the two theories for £/0y, = 750 for simply supported circular
plates.

(b) For clamped plates, the buckling stress factors decrease with increasing plate thickness //a, but may
increase or decrease depending on the values of £/0, and ¢. In contrast to the simply supported plate case,
we see that buckling stress factors of clamped plates differ significantly using the IT and the DT. Fig. 7
shows the difference between the buckling results of the two theories for E/ay = 750 for clamped circular
plates.

4. Concluding remarks

The elastic/plastic buckling equations for thick plates are presented. The Mindlin plate theory was
adopted to admit the effect of transverse shear deformation which becomes significant in thick plates. To
capture the more practical elastic/plastic behaviour, two competing plasticity theories are considered; i.e.
the incremental theory of plasticity (IT) with the Prandtl-Reuss constitutive equations and the deforma-
tion theory of plasticity (DT) with the Hencky constitutive equations. The stability criteria are derived
for uniaxially loaded and equibiaxially loaded rectangular plates and uniform radially loaded circular
plates. Extensive closed form buckling stresses were generated for the square and circular plates with the
Ramberg—Osgood elastoplastic characteristic.

Generally, plastic buckling stress factors are much reduced from its elastic counterparts, especially when
the plate is thick, £/0y and Ramberg—-Osgood constant ¢ have large values. The buckling stress factors
obtained using the DT are consistently lower than the corresponding factors of the IT. The divergence of
these two results increases with increasing plate thickness, £/0y and ¢ values. This marked difference in
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buckling stress factors observed for thick plates could be exploited when designing experimental tests on
plates to establish which of the two considered theories of plasticity give better buckling results for thick
plates.
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Appendix A. Derivation of constitutive relations based on the rate form of Hencky’s deformation theory

It is assumed that the relationship between the stress rate and the rate of deformation at the point of
bifurcation is that corresponding to the incremental form of the DT suggested by Hencky. Since the strain
rate vector in that case is not along the normal to the Mises yield surface in the stress space, the yield
surface must be supposed to have locally changed in shape so that the normality rule still holds. The
possibility of the formation of a corner on the yield surface may also be included. The parameter G in this
modified theory is simply a measure of the length of the current deviatoric stress vector, rather than that of
the radius of an isotropically expanding Mises cylinder. The incremental form of the Hencky equation
e, = (387/26)s;; is easily found as

3dg (dev & 3z
P _ L P )
doy =75 (da G >S” 55 9 (A1)

where s;; is the deviatoric stress vector, and ds;; is its time increment, which must be considered in the
Jaumann sense, so that it vanishes in the event of an instantaneous rigid body rotation. The elastic strain
increment, given by the generalized Hooke’s law, is

. 1+v 1—2v
dslj = (T>dSU+ (3—E)5ijdo-kk (A2)

where ¢;; is the Kronecker delta.
Combining Egs. (A.1) and (A.2), the rate form of the complete stress—strain relation is obtained as

. 3E 1-2v), 1—2v\. 3¢ (E E
Ef'ij = (E—T>SU‘+ (T)akkaij—’_%(?_g)si/ (A3)

during the continued loading of a plastically stressed element. Although the preceding equation looks much
more complicated than the Prandtl-Reuss equation, the final results are not so for a biaxial state of stress.
In the above, T is the tangent modulus equal to d/dg, and S is the secant modulus equal to /¢, where ¢ is
the total effective strain.

Let —o; and —o, denote the non-zero principal stresses whose directions coincide with the x and y axes,
respectively, at the point of bifurcation. Since the effective stress & is given by

7’ =0’ — 0.0, + Gi + 3r§y (A4)

a straightforward differentiation gives
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ﬁ _ (201 — 02)da, + (207 — 01)do,

A5
G 262 (A-3)
on setting o, = —0y, T,, = 0, 6, = —0, at bifurcation. The constitutive Eq. (A.3) therefore furnishes
. 1/E 1-2v . . 1-2v . . 201 — 0, . .
Eé = 3 (E -3 )(2ox —4,) + — (6 +46,) + BV (201 — 02)0x + (207 — 01)0,)] (A.6)
. 1/E 1-—2v . . 1—-2v, . . 20, — 04 . .
Eé, = 3 <§ -3 ) (26, — 6,) + 5 (6, +6,) + iz (201 — 02)6y + (202 — 01)0y)] (A7)
) 1 /3E .
Eﬁxy = E <S — (1 — 2\))) ‘ny (Ag)
After some algebraic manipulations, the first two results are reduced to
. 3 T\ o3]. 3 T\ 0,0, ] .
, 3 T\ ol]. 3 T\ o0, |.

>

where 7 is the contraction ratio at the current state of stress. On using the expression 67 — 6,6, + 63 = >
the above relations can be inverted to give the constitutive relations in the form

2Ei,,

d-x:E(aéx+ﬁéy)7 d-y:E(ﬁéx"'Véy)’ fxy: [2V+((3E/S)—1)} (All)
where
1 T\ o?
R
_1 T T 0102

(A.12)

~
Il
w D=
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N
|
w
/7~
P
|
“l~
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\‘Q
[SS RSN ]
| I

i)
Il

-|-(1—2V)|:2_(1_2v)£_3<1_§>6;52]

“

Appendix B. Derivation of constitutive relations based on the Prandtl-Reuss material

For a Prandtl-Reuss material, the plastic strain rate vector, in a nine dimensional space, is directed along
the deviatoric stress vector. Stated mathematically, the flow rule is

. 3ep 3G 3¢6/1 1

gf’fzzsl'f:%sv:%(?‘i)s” (B.1)
since

1 de? de—de® de 1 1 1

- de~ d° do E T E (B.2)
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The complete Prandtl-Reuss equation relating the stress rate to the strain rate is given by

. : 1-2v\. 36 (E
ECU = (1 —+ V)Sij —+ <3)Gkk5ij +% (T — l)sij (B3)

This equation may be compared with Eq. (A.3), which evidently reduces Eq. (B.3) on setting S = £ in the
first and last terms on the right hand side. The method of derivation of the biaxial constitutive relations is
similar to that employed before.

It should be noted that the use of Eq. (A.3) for the analysis of the bifurcation problem, which is es-
sentially incremental in nature, along with the rate form of the field equations, is equivalent to the adoption
of a physically acceptable IT of plasticity. The DT, on the other hand, is based on stress and displacement
fields (not their rates of change), together with the integrated form of Eq. (A.3) as proposed by Hencky. The
results obtained from the two approaches are bound to differ from one another.
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